A Dimension Reduction Approach Using Shrinking for Multi-Dimensional Data Analysis

نویسنده

  • Yong Shi
چکیده

In this paper, we present ongoing research on data analysis based on our previous work on the shrinking approach. Shrinking [22] is a novel data preprocessing technique which optimizes the inner structure of data. It can be applied in many data mining fields. Following our previous work on the shrinking method for multi-dimensional data analysis in full data space, we propose a shrinking-based dimension reduction approach which tends to solve the dimension reduction problem from a new perspective. In this approach data are moved along the direction of the density gradient, thus making the inner structure of data more prominent. It is conducted on a sequence of grids with different cell sizes. Dimension reduction process is performed based on the difference of the data distribution projected on each dimension before and after the data-shrinking process. Those dimensions with dramatic variation of data distribution through the data-shrinking process are selected as good dimension candidates for further data analysis. This approach can assist to improve the performance of existing data analysis approaches. We demonstrate how this shrinking-based dimension reduction approach affects the clustering results of well-known algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Shrinking-Based Dimension Reduction Approach for Multi-Dimensional Data Analysis

In this paper, we present continuous research on data analysis based on our previous work on the shrinking approach. Shrinking[2] is a novel data preprocessing technique which optimizes the inner structure of data inspired by the Newton’s Universal Law of Gravitation[1] in the real world. It can be applied in many data mining fields. Following our previous work on the shrinking method for multi...

متن کامل

A Shrinking-Based Approach for Multi-Dimensional Data Analysis

Existing data analysis techniques have difficulty in handling multi-dimensional data. In this paper, we first present a novel data preprocessing technique called shrinking which optimizes the inner structure of data inspired by the Newton’s Universal Law of Gravitation[22] in the real world. This data reorganization concept can be applied in many fields such as pattern recognition, data cluster...

متن کامل

Constructing Two-Dimensional Multi-Wavelet for Solving Two-Dimensional Fredholm Integral Equations

In this paper, a two-dimensional multi-wavelet is constructed in terms of Chebyshev polynomials. The constructed multi-wavelet is an orthonormal basis for space. By discretizing two-dimensional Fredholm integral equation reduce to a algebraic system. The obtained system is solved by the Galerkin method in the subspace of by using two-dimensional multi-wavelet bases. Because the bases of subs...

متن کامل

A Multi Linear Discriminant Analysis Method Using a Subtraction Criteria

Linear dimension reduction has been used in different application such as image processing and pattern recognition. All these data folds the original data to vectors and project them to an small dimensions. But in some applications such we may face with data that are not vectors such as image data. Folding the multidimensional data to vectors causes curse of dimensionality and mixed the differe...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJIIP

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010