A Dimension Reduction Approach Using Shrinking for Multi-Dimensional Data Analysis
نویسنده
چکیده
In this paper, we present ongoing research on data analysis based on our previous work on the shrinking approach. Shrinking [22] is a novel data preprocessing technique which optimizes the inner structure of data. It can be applied in many data mining fields. Following our previous work on the shrinking method for multi-dimensional data analysis in full data space, we propose a shrinking-based dimension reduction approach which tends to solve the dimension reduction problem from a new perspective. In this approach data are moved along the direction of the density gradient, thus making the inner structure of data more prominent. It is conducted on a sequence of grids with different cell sizes. Dimension reduction process is performed based on the difference of the data distribution projected on each dimension before and after the data-shrinking process. Those dimensions with dramatic variation of data distribution through the data-shrinking process are selected as good dimension candidates for further data analysis. This approach can assist to improve the performance of existing data analysis approaches. We demonstrate how this shrinking-based dimension reduction approach affects the clustering results of well-known algorithms.
منابع مشابه
A Shrinking-Based Dimension Reduction Approach for Multi-Dimensional Data Analysis
In this paper, we present continuous research on data analysis based on our previous work on the shrinking approach. Shrinking[2] is a novel data preprocessing technique which optimizes the inner structure of data inspired by the Newton’s Universal Law of Gravitation[1] in the real world. It can be applied in many data mining fields. Following our previous work on the shrinking method for multi...
متن کاملA Shrinking-Based Approach for Multi-Dimensional Data Analysis
Existing data analysis techniques have difficulty in handling multi-dimensional data. In this paper, we first present a novel data preprocessing technique called shrinking which optimizes the inner structure of data inspired by the Newton’s Universal Law of Gravitation[22] in the real world. This data reorganization concept can be applied in many fields such as pattern recognition, data cluster...
متن کاملConstructing Two-Dimensional Multi-Wavelet for Solving Two-Dimensional Fredholm Integral Equations
In this paper, a two-dimensional multi-wavelet is constructed in terms of Chebyshev polynomials. The constructed multi-wavelet is an orthonormal basis for space. By discretizing two-dimensional Fredholm integral equation reduce to a algebraic system. The obtained system is solved by the Galerkin method in the subspace of by using two-dimensional multi-wavelet bases. Because the bases of subs...
متن کاملA Multi Linear Discriminant Analysis Method Using a Subtraction Criteria
Linear dimension reduction has been used in different application such as image processing and pattern recognition. All these data folds the original data to vectors and project them to an small dimensions. But in some applications such we may face with data that are not vectors such as image data. Folding the multidimensional data to vectors causes curse of dimensionality and mixed the differe...
متن کاملRobust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJIIP
دوره 1 شماره
صفحات -
تاریخ انتشار 2010